Bag of Words Meets Bags of Popcorn

This is the code from the third part of the tutorial from kaggle.

Vector Averaging

Without modification this code obtained a devastating accuracy score of 0.82860, as opposed to 0.84524 using the Bag of Words.


In [40]:
import numpy as np  # Make sure that numpy is imported
from gensim.models import Word2Vec
import pandas as pd
from bs4 import BeautifulSoup
import re
from nltk.corpus import stopwords
from sklearn.cluster import KMeans
import time

In [37]:
model = Word2Vec.load("300features_40minwords_10context")
# see Word2Vec (we basically reuse some of the code from that part)
train = pd.read_csv( "labeledTrainData.tsv", header=0, 
 delimiter="\t", quoting=3 )
test = pd.read_csv( "testData.tsv", header=0, delimiter="\t", quoting=3 )
num_features = 300

def review_to_wordlist( review, remove_stopwords=False ):
    # Function to convert a document to a sequence of words,
    # optionally removing stop words.  Returns a list of words.
    #
    # 1. Remove HTML
    review_text = BeautifulSoup(review).get_text()
    #  
    # 2. Remove non-letters
    review_text = re.sub("[^a-zA-Z]"," ", review_text)
    #
    # 3. Convert words to lower case and split them
    words = review_text.lower().split()
    #
    # 4. Optionally remove stop words (false by default)
    if remove_stopwords:
        stops = set(stopwords.words("english"))
        words = [w for w in words if not w in stops]
    #
    # 5. Return a list of words
    return(words)

In [34]:
def makeFeatureVec(words, model, num_features):
    # Function to average all of the word vectors in a given
    # paragraph
    #
    # Pre-initialize an empty numpy array (for speed)
    featureVec = np.zeros((num_features,),dtype="float32")
    #
    nwords = 0.
    # 
    # Index2word is a list that contains the names of the words in 
    # the model's vocabulary. Convert it to a set, for speed 
    index2word_set = set(model.index2word)
    #
    # Loop over each word in the review and, if it is in the model's
    # vocaublary, add its feature vector to the total
    for word in words:
        if word in index2word_set: 
            nwords = nwords + 1.
            featureVec = np.add(featureVec,model[word])
    # 
    # Divide the result by the number of words to get the average
    featureVec = np.divide(featureVec,nwords)
    return featureVec


def getAvgFeatureVecs(reviews, model, num_features):
    # Given a set of reviews (each one a list of words), calculate 
    # the average feature vector for each one and return a 2D numpy array 
    # 
    # Initialize a counter
    counter = 0.
    # 
    # Preallocate a 2D numpy array, for speed
    reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32")
    # 
    # Loop through the reviews
    for review in reviews:
       #
       # Print a status message every 1000th review
       if counter%1000. == 0.:
           print "Review %d of %d" % (counter, len(reviews))
       # 
       # Call the function (defined above) that makes average feature vectors
       reviewFeatureVecs[counter] = makeFeatureVec(review, model, \
           num_features)
       #
       # Increment the counter
       counter = counter + 1.
    return reviewFeatureVecs

In [35]:
# ****************************************************************
# Calculate average feature vectors for training and testing sets,
# using the functions we defined above. Notice that we now use stop word
# removal.

clean_train_reviews = []

for review in train["review"]:
    clean_train_reviews.append( review_to_wordlist( review, \
        remove_stopwords=True ))

trainDataVecs = getAvgFeatureVecs( clean_train_reviews, model, num_features )

print "Creating average feature vecs for test reviews"
clean_test_reviews = []
for review in test["review"]:
    clean_test_reviews.append( review_to_wordlist( review, \
        remove_stopwords=True ))

testDataVecs = getAvgFeatureVecs( clean_test_reviews, model, num_features )


Review 0 of 25000
Review 1000 of 25000
Review 2000 of 25000
Review 3000 of 25000
Review 4000 of 25000
Review 5000 of 25000
Review 6000 of 25000
Review 7000 of 25000
Review 8000 of 25000
Review 9000 of 25000
Review 10000 of 25000
Review 11000 of 25000
Review 12000 of 25000
Review 13000 of 25000
Review 14000 of 25000
Review 15000 of 25000
Review 16000 of 25000
Review 17000 of 25000
Review 18000 of 25000
Review 19000 of 25000
Review 20000 of 25000
Review 21000 of 25000
Review 22000 of 25000
Review 23000 of 25000
Review 24000 of 25000
Creating average feature vecs for test reviews
Review 0 of 25000
Review 1000 of 25000
Review 2000 of 25000
Review 3000 of 25000
Review 4000 of 25000
Review 5000 of 25000
Review 6000 of 25000
Review 7000 of 25000
Review 8000 of 25000
Review 9000 of 25000
Review 10000 of 25000
Review 11000 of 25000
Review 12000 of 25000
Review 13000 of 25000
Review 14000 of 25000
Review 15000 of 25000
Review 16000 of 25000
Review 17000 of 25000
Review 18000 of 25000
Review 19000 of 25000
Review 20000 of 25000
Review 21000 of 25000
Review 22000 of 25000
Review 23000 of 25000
Review 24000 of 25000

In [39]:
# Fit a random forest to the training data, using 100 trees
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier( n_estimators = 100 )

print "Fitting a random forest to labeled training data..."
forest = forest.fit( trainDataVecs, train["sentiment"] )

# Test & extract results 
result = forest.predict( testDataVecs )

# Write the test results 
output = pd.DataFrame( data={"id":test["id"], "sentiment":result} )
output.to_csv( "Word2Vec_AverageVectors.csv", index=False, quoting=3 )


Fitting a random forest to labeled training data...

Vector Clustering

This code scores a 0.84012 in the accuracy score.


In [41]:
start = time.time() # Start time

# Set "k" (num_clusters) to be 1/5th of the vocabulary size, or an
# average of 5 words per cluster
word_vectors = model.syn0
num_clusters = word_vectors.shape[0] / 5

# Initalize a k-means object and use it to extract centroids
kmeans_clustering = KMeans( n_clusters = num_clusters )
idx = kmeans_clustering.fit_predict( word_vectors )

# Get the end time and print how long the process took
end = time.time()
elapsed = end - start
print "Time taken for K Means clustering: ", elapsed, "seconds."


Time taken for K Means clustering:  4460.01381397 seconds.

In [42]:
# Create a Word / Index dictionary, mapping each vocabulary word to
# a cluster number                                                                                            
word_centroid_map = dict(zip( model.index2word, idx ))

In [43]:
def create_bag_of_centroids( wordlist, word_centroid_map ):
    #
    # The number of clusters is equal to the highest cluster index
    # in the word / centroid map
    num_centroids = max( word_centroid_map.values() ) + 1
    #
    # Pre-allocate the bag of centroids vector (for speed)
    bag_of_centroids = np.zeros( num_centroids, dtype="float32" )
    #
    # Loop over the words in the review. If the word is in the vocabulary,
    # find which cluster it belongs to, and increment that cluster count 
    # by one
    for word in wordlist:
        if word in word_centroid_map:
            index = word_centroid_map[word]
            bag_of_centroids[index] += 1
    #
    # Return the "bag of centroids"
    return bag_of_centroids

In [44]:
# Pre-allocate an array for the training set bags of centroids (for speed)
train_centroids = np.zeros( (train["review"].size, num_clusters), \
    dtype="float32" )

# Transform the training set reviews into bags of centroids
counter = 0
for review in clean_train_reviews:
    train_centroids[counter] = create_bag_of_centroids( review, \
        word_centroid_map )
    counter += 1

# Repeat for test reviews 
test_centroids = np.zeros(( test["review"].size, num_clusters), \
    dtype="float32" )

counter = 0
for review in clean_test_reviews:
    test_centroids[counter] = create_bag_of_centroids( review, \
        word_centroid_map )
    counter += 1
# Fit a random forest and extract predictions 
forest = RandomForestClassifier(n_estimators = 100)

# Fitting the forest may take a few minutes
print "Fitting a random forest to labeled training data..."
forest = forest.fit(train_centroids,train["sentiment"])
result = forest.predict(test_centroids)

# Write the test results 
output = pd.DataFrame(data={"id":test["id"], "sentiment":result})
output.to_csv( "BagOfCentroids.csv", index=False, quoting=3 )


Fitting a random forest to labeled training data...

In [ ]: